以糖尿病为例,不精确的疾病分型,对于前期的预防和后期的治疗都十分不利。之前,医学界已经知道,有多达百余种途径可能导致糖尿病的发生,涉及到胰腺、肝脏、肌肉、大脑甚至脂肪的不同变化。现代通过基因的研究发现,对不同类型糖尿病而言,其致病基因十分多样。这时,如果将这些不同亚型的糖尿病混为一谈,就会让人很难弄明白,为什么携带同样的基因突变,病人在面对同一治疗方案时,会出现完全不同的治疗效果。
正如生物化学家阿兰·阿蒂(Alan Attie)所说的那样,“从致病基因到体重、血糖水平等表型的出现这一过程,往往有许多步,其中每一步都可能发生基因突变,这最终会削弱基因和表型之间的联系”。因此,只看表型(即临床症状)和只看突变基因,得到的都只会是片面的结果。只有将两者有机结合起来,才能更加深我们对疾病的了解,做到更精确地进行疾病分型,以便更容易“对症下药”。
美国国立卫生研究院(NIH)曾发起一项大型项目,构建了癌症基因组数据库(the Cancer Genome Altas,简称TCGA),将所有癌症相关基因突变分类保存,共保存有250万Gb的数据,这大大改进了研究者对各种类型癌症的认识。但仅仅这样,对于提供了组织样本的患者来说,并没给他们的临床经历带来太多改变。
与癌症治疗相关的另一方面,是个人电子健康记录及其病例的特异性信息。对很多研究者来说,如果能从医院或个人手中得到这部分信息,就能够卓有成效地进行癌症治疗方案的改进。总体而言,只有在拿到测序大数据的基础上,同时掌握病人的干预记录(来自个人的电子健康记录)和临床特征(来自医疗机构的临床病理记录),才能最终做到“升级”肿瘤的临床治疗方案。
医药研发也能从大数据获益良多,这无可厚非。在医药研发的世界里,基因技术公司更倾向于进行长期的生物学研究,并将其联系到临床数据上,以使得药物能够“对症下药”到每个人身上,甚至会帮助制药公司做出更“大胆”的研发决定,进行个性化定制免疫疗法的研究。
以微生物菌群研究为例。现在就有人提出这样的想法:什么时候我们会想要研发出能改变体内微生物菌群的药物呢?这些存在于我们肠道、皮肤表面和环境中的数以十亿计的微生物,不仅影响我们是否患病,还会影响到药物对疾病所产生的药效。现在大部分对于微生物菌群研究得到的数据还只是针对小部分人群,但这是否也意味着一个不错的研究方向?毕竟我们现在还缺乏一些稳定的测试手段,能让我们以一种持续性的方法来改变微生物菌群,并对疾病发展产生有意义的影响。
对免疫学研究来说,大数据会带来什么?首先,有以下“组学”都可以对免疫学研究产生有利影响,包括:基因组、微生物组、表观基因组、转录组、代谢组、通路组、细胞组和蛋白组。具体来说,比如对特定B细胞或T细胞所有抗体抗原分子的分析,这些分析结果(尤其是与能识别对应抗体的抗原决定簇的技术相结合),可将临床诊断、抗体药物研发、疫苗研发上升到一个新高度,并能为自身抗原肽结合抗体提供新见解。
伴随着荆棘的引路,往往也会引来好歌喉的夜莺。大数据给我们带来挑战的同时,也带来了机遇,尤其是对于一些恶性疾病(比如癌症)的治疗。一种单一类型的肿瘤,往往就会伴随着多样化的基因突变,但随着投入更多的时间和金钱,会得到更多的治疗靶点。当大数据分析的精度越来越高时,对于整个疾病发生过程的了解也会越来越深入,有了“大数据分析”这项利器,更多的精准治疗方案将会产生,帮助人们做出更好的选择。(编译 | 翟文珠 责编 | 叶水送)
参考文献
1.Eric Bender. (2015). “Big data in biomedicine。” Nature 527 : S1
2.Michael Eisenstein. (2015). “Big data: The power of petabytes。” Nature 527 : S2-S4
3.Neil Savage. (2015). “Proteomics: High-protein research。” Nature 527 : S6-S7
4.Katherine Bourzac. (2015). “Collaborations: Mining the motherlodes。” Nature 527 : S8-S9
5.Charlie Schmidt. (2015). “Cancer: Reshaping the cancer clinic。” Nature 527 : S10–S11
6.Neil Savage. (2015). “Mobile data: Made to measure。” Nature 527 : S12-S13
7.Cathryn M. Delude. (2015). “Deep phenotyping: The details of disease。” Nature 527 : S14–S15
8.Eric Bender. (2015). “Better insights, better drugs。” Nature 527 : S18
9.Eric Bender. (2015). “Big data in biomedicine: 4 big questions。” Nature 527 : S19
10.Joachim L Schultze. (2015). “Teaching 'big data' analysis to young immunologists。” Nature Immunology 16 : 902-905
11.Eric J. Topol. (2015). “The big medical data miss: challenges in establishing an open medical resource。” Nature Reviews Genetics 16 : 253–254
12.Jill U. Adams. (2015). “Big hopes for big data。” Nature 527 :S108-S109.
【免责声明】本文仅代表作者个人观点,与IT09数码网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。您若对该稿件内容有任何疑问或质疑,请联系本网将迅速给您回应并做处理。