预计到2022年,探测器将抵达一颗“双小行星” 65803 Didymos,这颗小行星的独特之处在于它由两个部分组成,除了本体之外,还有一颗小小的伴随卫星,名叫“Didymoon”。其本体直径大约780米,卫星直径大约170米。这两者之间的距离非常近,距离只有大约1100米,每隔大约11.9小时相互绕转一周。按照计划,Aim飞船将抵达这颗独特小行星附近并开展绕飞,对其成分进行探测,同时等待Dart探测器抵达。而一旦Dart飞船抵达,它将撞击这颗小行星的卫星,此时Aim飞船将全程观察撞击导致的结果。整个项目的目的是想要了解人类能够在多大程度上改变一颗小行星的轨道,并且不至于将其推入一条可能威胁地球的轨道。
读者可能会觉得这颗小行星太小了,那么请参见以下事实。测算显示,美国最著名的亚利桑那州巴林杰陨石坑可能是由一颗直径仅有小行星 “Didymos”1/3左右的小天体撞击形成的,其形成的撞击坑直径超过1200米。如果“不起眼”的小行星卫星“Didymoon”以大约每秒15.5公里的速度撞上地球——这是这颗小天体撞击地球的最小速度——它将释放相当于200万吨当量核弹的能量,能够轻易摧毁一座城市。而如果其以最大速度撞击(约为34.6公里每秒),则将释放相当于400万吨当量核弹的能量,这相当于200颗广岛原子弹的威力!
帕特里克·米歇尔(Patrick Michel)是法国国家科学研究中心的高级研究员,也是Aida计划的首席科学家。他表示:“我们想要改变围绕本体运行的小行星卫星的轨道,因为这颗小卫星围绕本体的公转速度仅有大约每秒19厘米。”但即便是非常微小的变化也能够从地球上被观测并测量,预计撞击后其轨道周期将发生大约4分钟的变化。
当然,另外一项重要的目的是想了解撞击器是否能够正常发挥作用。米歇尔表示:“所有的撞击模型都是基于对于撞击物理过程的了解,而我们所有的数据都是基于实验室尺度,在厘米级目标上获取的。”根据这样的模型得到的数据是否适用于真正的小行星环境目前仍然是一个开放性问题。
不过,约翰森表示,这项技术目前来看仍然可算是人类掌握的最成熟的一项技术,因为在此之前人类已经展示了抵达这样的小天体的卓越能力——包括美国宇航局的“黎明” 号探测器围绕谷神星和灶神星运行,以及欧洲的罗塞塔飞船成功释放着陆器登陆67P彗星彗核的壮举等等。
在2013年,俄罗斯车里雅宾斯克附近,一颗小天体在距离地面上空大约30公里高度上解体爆炸,强烈的冲击波在地面上造成大量窗户玻璃破碎,超过1400人被碎玻璃和其他溅射物割伤方案二:引力牵引
除了撞击选项之外,还可以利用引力——简单说就是将一个质量较大的物体,或者说飞船本身布置到这类小天体近旁,从而利用飞船或大质量物体本身的引力逐渐地“引导”小天体改变轨道。这一方案的优势就在于它只要求飞船能够抵达小行星就可以。其轨道方案将是围绕该小行星与太阳引力平衡点位置的拉格朗日点运行的复杂轨道设计。另外,美国宇航局即将发射的“小行星重定向任务”(ARM)也将间接地开展此项技术验证,其核心任务之一便是将一颗小行星推移到地球轨道附近。
然而,以上所有这类方案面临的一个共同的大问题便是时间。要执行这样一个远离地球轨道空间的应对任务将需要至少4年以上的设计建造时间,随后飞船发射之后还将需要一到两年的飞行时间。如果小行星的威胁迫在眉睫,那么我们或许就将被迫考虑其他应对策略了。
方案三:激光器
美国加州大学圣巴巴拉分校物理学家张启成(Qicheng Zhang,音译)认为,激光或许将是更好的选择。激光不会将小行星引爆,而是将造成其一部分表面物质的蒸发。张与他的同事一起,在实验宇宙学家菲利普·鲁宾(Philip Lubin)的带领下开展了一系列的相关轨道模拟实验,并在提交给太平洋天文学会的一篇论文中对相关情况进行了阐述。
【免责声明】本文仅代表作者个人观点,与IT09数码网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。您若对该稿件内容有任何疑问或质疑,请联系本网将迅速给您回应并做处理。