深度学习能力的极大发展是如今人工智能拐点背后的催化剂之一。深度学习的底层技术框架——神经网络,已经存在了数十年,但过去 5 到 10 年的 3 种东西改变了深度学习:
1)数据。随 着全球设备、机器和系统的连接,大量的无结构数据被创造出来。神经网络有了更多的数据,就变得更为有效,也就是说随着数据量增加,机器学习能够解决的问题 也增加。手机、IoT 、低成本数据存储和处理(云)技术的成熟使得可用数据集的大小、结构都有了极大增长。例如,特斯拉收集了 780mn 英里的驾驶数据,而且通过他们的互连汽车,每 10 小时就能增加 100 万英里的数据。此外,Jasper 有一个平台,能让多家汽车制造商和电信公司进行机器间的交流,这家公司于今年 2 月份被 Cisco 收购。Verizon 在 8 月份做了类似的投资,宣布收购 Fleetmatics,Fleetmatics 做的是将汽车上的远程传感器通过无线网络连接到云软件。未来,5G 网络的上线将会加速数据生成与传输的速率。据 IDC 的 Digital Universe Report 显示,年度数据生成预期到 2020 年达到 44zettabytes,表明我们正在见证应用这些技术的使用案例。
图 1:年度数据生成预期到 2020 年达到 44zettabytes
2)更快的硬件。GPU 的再次使用、低成本计算能力的普遍化,特别是通过云服务,以及建立新的神经网络模型,已经极大的增加了神经网络产生结果的速度与准确率。GPU 和并行架构要比传统的基于数据中心架构的 CPU 能更快的训练机器学习系统。通过使用图像芯片,网络能更快的迭代,能在短期内进行更准确的训练。同时,特制硅的发展,比如微软和百度使用的 FPGA,能够用训练出的深度学习系统做更快的推断。另外,从 1993 年开始超级计算机的原计算能力有了极大发展(图 2)。在 2016 年,单张英伟达游戏显卡就有了类似于 2002 年之前最强大的超级计算机拥有的计算能力。
图 2:全球超级计算机的原计算性能,以 GFLOPs 测试
成本也有了极大的降低。英伟达 GPU(GTX 1080)有 9 TFLOPS 的性能,只要 700 美元,意味着每 GFLOPS 只要 8 美分。在 1961 年,串够 IBM 1620s 每提供 1 GFLOPS 需要的钱超过 9 万亿。
图 3:每单位计算的价格有了极大下降
3)更好、更普遍可用的算法。更 好的输入(计算和数据)使得更多的研发是面向算法,从而支持深度学习的使用。例如伯克利的 Caffe、谷歌的 TensorFlow 和 Torch 这样的开源框架。比如,刚开源一周年的 TensorFlow,成为了 GitHub 上有最多 forked repositories 的框架。虽然不是所有的人工智能发生于普遍可用的开源框架中,但开源确实在加速发展,而且也有更多先进的工具正在开源。
【免责声明】本文仅代表作者个人观点,与IT09数码网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。您若对该稿件内容有任何疑问或质疑,请联系本网将迅速给您回应并做处理。